skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shirley, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The PRobe far-Infrared Mission for Astrophysics (PRIMA) concept aims to perform mapping with spectral coverage and sensitivities inaccessible to previous FIR space telescopes. PRIMA’s imaging instrument, PRIMAger, provides unique hyperspectral imaging simultaneously covering 25–235 µm. We synthesize images representing a deep, 1500 h deg−2 PRIMAger survey, with realistic instrumental and confusion noise. We demonstrate that we can construct catalogues of galaxies with a high purity (>95 per cent) at a source density of 42 k deg−2 using PRIMAger data alone. Using the XID+ deblending tool, we show that we measure fluxes with an accuracy better than 20 per cent to flux levels of 0.16, 0.80, 9.7, and 15 mJy at 47.4, 79.7, 172, and 235 µm, respectively. These are a factor of ∼2 and ∼3 fainter than the classical confusion limits for 72–96 and 126–235 µm, respectively. At $$1.5 \le z \le 2$$, we detect and accurately measure fluxes in 8–10 of the 10 channels covering 47–235 µm for sources with $$2 \lesssim \log ({\rm SFR}) \lesssim 2.5$$, a 0.5 dex improvement on what might be expected from the classical confusion limit. Recognizing that PRIMager will operate in a context where high-quality data will be available at other wavelengths, we investigate the benefits of introducing additional prior information. We show that by introducing even weak prior flux information when employing a higher source density catalogue (more than one source per beam), we can obtain accurate fluxes an order of magnitude below the classical confusion limit for 96–235 µm. 
    more » « less
  2. ABSTRACT We present observations of SN 2020fqv, a Virgo-cluster type II core-collapse supernova (CCSN) with a high temporal resolution light curve from the Transiting Exoplanet Survey Satellite (TESS) covering the time of explosion; ultraviolet (UV) spectroscopy from the Hubble Space Telescope (HST) starting 3.3 d post-explosion; ground-based spectroscopic observations starting 1.1 d post-explosion; along with extensive photometric observations. Massive stars have complicated mass-loss histories leading up to their death as CCSNe, creating circumstellar medium (CSM) with which the SNe interact. Observations during the first few days post-explosion can provide important information about the mass-loss rate during the late stages of stellar evolution. Model fits to the quasi-bolometric light curve of SN 2020fqv reveal  0.23 M⊙ of CSM confined within  1450 R⊙ (1014 cm) from its progenitor star. Early spectra (<4 d post-explosion), both from HST and ground-based observatories, show emission features from high-ionization metal species from the outer, optically thin part of this CSM. We find that the CSM is consistent with an eruption caused by the injection of ∼5 × 1046 erg into the stellar envelope ∼300 d pre-explosion, potentially from a nuclear burning instability at the onset of oxygen burning. Light-curve fitting, nebular spectroscopy, and pre-explosion HST imaging consistently point to a red supergiant (RSG) progenitor with $$M_{\rm ZAMS}\approx 13.5\!-\!15 \, \mathrm{M}_{\odot }$$, typical for SN II progenitor stars. This finding demonstrates that a typical RSG, like the progenitor of SN 2020fqv, has a complicated mass-loss history immediately before core collapse. 
    more » « less
  3. Abstract A large fraction of Type Ia supernova (SN Ia) observations over the next decade will be in the near-infrared (NIR), at wavelengths beyond the reach of the current standard light-curve model for SN Ia cosmology, SALT3 (∼2800–8700 Å central filter wavelength). To harness this new SN Ia sample and reduce future light-curve standardization systematic uncertainties, we train SALT3 at NIR wavelengths (SALT3-NIR) up to 2μm with the open-source model-training softwareSALTshaker, which can easily accommodate future observations. Using simulated data, we show that the training process constrains the NIR model to ∼2%–3% across the phase range (−20 to 50 days). We find that Hubble residual (HR) scatter is smaller using the NIR alone or optical+NIR compared to optical alone, by up to ∼30% depending on filter choice (95% confidence). There is significant correlation between NIR light-curve stretch measurements and luminosity, with stretch and color corrections often improving HR scatter by up to ∼20%. For SN Ia observations expected from the Roman Space Telescope, SALT3-NIR increases the amount of usable data in the SALT framework by ∼20% at redshiftz≲ 0.4 and by ∼50% atz≲ 0.15. The SALT3-NIR model is part of the open-sourceSNCosmoandSNANASN Ia cosmology packages. 
    more » « less
  4. Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS). 
    more » « less